
Acta Technica 62 No. 2B/2017, 551�560 c© 2017 Institute of Thermomechanics CAS, v.v.i.

Analysis of the key technologies of

practical application based on

embedded reconfigurable computing

system

Jingshu Cao1, 2, Wenxin Li1

Abstract. With the continuous development of science and technology, recon�gurable com-

puting has become one of the current research hotspots as a new computing model. However,

with the increasing complexity of the embedded recon�gurable computing system, it is increasingly

necessary to design from the system level to improve the design e�ect. Therefore, the practical ap-

plication technology of the recon�gurable computing system has become a very important research

topic. In this paper, the development of the subject was understood, the relevant theory of the

subject was analyzed, the key technology was researched and analyzed, the example experiment

was carried out, and the results were compared and analyzed, which proves the feasibility and

e�ectiveness of the study, and is of great signi�cance to the development of key technologies.

Key words. Recon�gurable computing, system level design, operating system.

1. Introduction

Traditional computing systems usually use two di�erent methods to implement
the algorithm. Firstly, the use of special integrated circuits, this method has a very
high execution speed and accuracy of the operation. Once designed, its function
cannot be changed. In order to implement di�erent algorithms, it is necessary to
redesign the circuit, the development cycle and the cost is high, and only the mass
production can show its superiority. Secondly, the use of general-purpose micropro-
cessors, the �exibility of the method is high, and once the requirements change, the
function of the system can be changed by software instruction, but the serial exe-
cution of the instruction and the bottleneck of memory access bandwidth make the

1Lanzhou Institute of Physics, GanSu, LanZhou, 730000, China
2Corresponding author

http://journal.it.cas.cz



552 JINGSHU CAO, WENXIN LI

performance of general-purpose microprocessors often di�cult to meet the actual
requirements. A single processor-based software implementation does not provide
good support for complex algorithms with potential parallelism [1]. Semiconductor
industry has been in accordance with the generalization and specialization of the
alternating development, once every twenty years. The �rst common and dedicated
loop is characterized by pure hardware design, that is, through the hard wired way to
achieve the algorithm. The second loop is characterized by sequential programming
of software, that is, through the order to achieve the algorithm. The third cycle is
characterized by structural programming, that is, through the recon�gurable logic
device to implement the algorithm [2]. As a new way to calculate, recon�gurable
computing is in line with the development trend of semiconductor technology. It
combines the advantages of generalization and specialization, uses the FPGA to re-
con�gure the logic unit functions and interconnection characteristics, which is a form
based on the application requirements of the dynamic con�guration of the circuit and
has the high performance of hardware implementation and software implementation
�exibility [3]. Recon�gurable systems based on recon�gurable computing techniques
can be simply de�ned as computing systems that contain at least one recon�gurable
hardware module. The function of the hardware module can be modi�ed by the
end user. The modi�cation process is realized mainly by refactoring or partially
reconstructing the programmable logic device in the system. The recon�gurable
system can combine the advantages of software implementation and hardware im-
plementation with only a small amount of hardware resources. Its appearance makes
the boundaries of hardware and software in the traditional sense become blurred,
the hardware system to be software [4]. Recon�gurable systems have been presented
with powerful computational performance and data processing capabilities in a num-
ber of data-intensive applications, particularly in the presence of large parallelism
and waterborne applications within the algorithm. One of the most representatives
is the Splash 2 developed by the US Supercomputer Research Center in 1992 [5].

2. State of the art

2.1. Recon�gurable computing overview

Estrin of the University of California, USA, �rst proposed a recon�gurable con-
cept and developed a prototype system. The system consists of non-�exible but
programmable processors and �exible digital logic components reconstructed by pro-
gram control. Although the abstraction level of the system software and hardware
is not high, it can be programmed and reconstructed [6]. As the implementation of
the technology is not yet perfect, the system developed by Estrin is only a rough ap-
proximation of the design concept, but it is the core of the recon�gurable computing
system.

In 1986, Xilinx companies developed the world's �rst FPGA chip, and obtained
a very good application e�ect in practice. To the early nineties of last century,
there has been some FPGA-oriented development for a certain type of application
computing equipment. The common practice is to combine one or more FPGAs,



ANALYSIS OF THE KEY TECHNOLOGIES 553

CPUs, and memories together. As part of the coprocessor accelerator program that
can be executed in parallel (typically the loop body), the FPGA is managed by the
refactoring [7]. The computing device of this structure was known as a recon�gurable
computer. This way of working is also called refactoring.

From a di�erent research point of view, the understanding of recon�gurable com-
puting is not the same. We see it as a class of computer organizational structure,
and has the following characteristics which are di�erent from other organizational
structure, that is, the chip customization capabilities after manufacture (di�erent
from the ASIC), can achieve the mapping of the algorithm to the computing engine
to a large extent (di�erent from the general microprocessor) [8].

Recon�gurable computing is a numerical model of the spatiotemporal domain
which uses FPGA as the technical basis, changes the function of the logical unit
in FPGA and the interconnection mode of the connection according to the pro-
gramming information in the recon�gurable device con�guration �le, thus changing
the function of the computing system. It can use custom recon�gurable devices to
customize the computing components while designing the implementation, and can
reuse the computational resources to achieve a number of di�erent computational
tasks [9]. Recon�gurable computing makes up for the performance gap between
microprocessor implementation and ASIC implementation, the calculation speed is
comparable to that of ASIC at the same time, which has the �exibility similar to the
microprocessor, and provides a �exible and e�ective computing solution for a wide
range of applications.

2.2. Research at home and abroad

As the recon�gurable system has broad application prospects and potential mar-
ket value, programmable device manufacturers Xilinx and Altera are represented.
Industry has carried out in-depth research on recon�gurable devices since the mid-
1990s. The goal is to improve the device reconstruction speed, there have been some
partially recon�gurable devices, as well as recon�gurable devices using compressed
con�guration �les [10]. In addition, �eld-speci�c recon�gurable chips have also been
successful, such as recon�gurable multiprocessor systems developed by IMEC and
Freescale semiconductors, recon�gurable communication chip series which are capa-
ble of handling 50 channels at a chip rate of CDMA 2000 developed by Chameleon
Systems, and the dynamic recon�gurable processor "DAPDNA-2" developed by
Japan IPFlex for image processing and so on.

At the same time, the academic research on recon�gurable system has made
great progress, and many new architectures, algorithms and tools have emerged.
According to the degree of coupling, the recon�gurable computing platform is divided
into system-level loose coupling system, chip-level loose coupling system and on-
chip tight coupling system. In order to improve the speed of reconstruction, the
researchers put forward a number of strategies and methods, some of which have been
implemented in commercial products, such as partial recon�guration. In addition,
scholars have proposed to use multi-context and con�guration data Cache to reduce
the con�guration time [11]. In terms of compilation tools, the Single-Assignment C



554 JINGSHU CAO, WENXIN LI

project already has the ability to compile some C fragments into assembly language
and map it to a recon�gurable system.

With the progress of the level of programmable devices and integrated circuits,
recon�gurable computing has been widely used in many areas from embedded sys-
tems to high performance computing, including digital image processing, network
security, bioinformatics and supercomputing, However, for the further application
of recon�gurable computing, there are still many key problems that need to be
solved and improved. In the aspect of system design support, with the increasing
complexity of embedded recon�gurable computing system design, it is necessary to
design from the system level at the same time. In the aspect of running environment
support, because the traditional operating system can't adapt to the new recon�g-
urable system application requirements, it is one of the most important problems
to be solved that how to manage the recon�gurable computing resources through
the operating system, how to shield the details of the implementation, and how to
provide the hardware and software uni�ed programming model to the application
developers [12].

In the domestic, Zhejiang University, China University of Science and Technology,
Xi'an University of Electronic Science and Technology, National University of De-
fense Technology and the Chinese Academy of Sciences Institute of Computing and
other research institutes have carried out fruitful research on the related problems
in recon�gurable operating system. Our labs use the improved uni�ed multitasking
model to design the SHUM-UCOS operating system for recon�gurable computing,
which has been able to support the dynamic creation of hardware tasks and provide
a variety of topology and communication support.

3. Methodology

3.1. Recon�gurable device foundation

FPGA is the most commonly used recon�gurable device. The most widely used is
based on SRAM technology. It uses the con�guration SRAM to store con�guration
information for logical and routing resources, and the con�guration information
is written to the internal con�guration SRAM of the FPGA to change the logic
functions and interconnections between the logical units [13]. As shown in Fig. 1,
Q is determined by the circuit design or hardware description language, and the
corresponding con�guration is controlled by programming "read" or "write".

The island structure is an early programmable device structure, and it is also a
commonly used device model for academic discussion. The island structure consists
of a logical cell array, routing resources, and input and output pins. Fine-grained
logical units are small lookup tables (LUTs).

Existing recon�gurable devices mainly support the following recon�guration mod-
els:

Single context model: In this model, each rewrite of con�guration information
must override the entire con�guration memory.

Multi-context model: The main idea of this model is to prepare a plurality of



ANALYSIS OF THE KEY TECHNOLOGIES 555

Fig. 1. SRAM-based FPGA programming principles

con�guration �les for the logical array of devices and store them in di�erent ad-
dresses.

Dynamic partial reconstruction model: In this model, only some of the resources
on the recon�gurable device can be recon�gured selectively without a�ecting the
other resources on the device [14].

3.2. Dynamic recon�gurable system architecture

In this paper, the dynamic recon�gurable system based on bus connection is
studied. The system is mainly composed of CPU, recon�gurable device, system
memory, con�guration controller and communication controller, as shown in Fig. 2.

Fig. 2. Dynamic recon�gurable system based on bus connection

In Fig. 2, the operating system runs on CPU, which is responsible for manag-
ing the entire recon�gurable computing system and handling software tasks. As an
additional computing unit other than the CPU, the recon�gurable device contains
a number of CPUs for performing coarse-grained computationally intensive tasks.
The communication controller is responsible for handling the underlying communi-
cation details and provides support for inter-task communication. The system has a
dynamic partial refactoring capability that can be reconstructed on a recon�gurable
device to load new hardware tasks without a�ecting the other running parts. Refac-
toring refers to the process in which the con�guration controller reprograms the
RPU in units of frames according to the corresponding hardware task con�guration
information in the con�guration memory.



556 JINGSHU CAO, WENXIN LI

3.3. Experimental platform and operating environment

The experimental platform consists of XC2VP30 FPGAs and related peripher-
als that support DPR. The PPC 405 hardcore CPU and recon�gurable computing
resources are included in the FPGA, both sharing the OPB bus, CPU clock fre-
quency and bus frequency are 100MHz [15]. According to the Xilinx EAPR re-
con�gurable system design �ow, the platform is designed to be divided into AES
encryption/decryption PRM and the basic design except PRM. They are located
in FPGA dynamic PRR and static area. Due to the limited resources within the
FPGA, the experimental platform contains only one PRR, the PRR and the static
region are communicated via the bus macro, and the routing results are shown in
Fig. 3.

Fig. 3. XC2VP30 FPGA wiring diagram

The extended Xilkernel 3.0 operating system kernel is loaded on the above ex-
perimental platform, in addition to support priority preemptive scheduling, dy-
namic/static bu�er allocation and semaphore synchronization, the kernel also added
PRR resource management and hardware task management module. In the process
of extending the thread concept from the software, the computing resource manage-
ment is extended from CPU to PRR. As Xilkernel itself supports Pthread multi-
threaded programming model, on this basis, it is further extended to support the
creation of hardware threads, control and data transmission, to provide designers
with dynamic recon�gurable hardware and software uni�ed multi-threaded program-
ming model SHUMDR.

Taking the AES application driven by data �ow as an example, it is assumed that
the data source to be processed is stored in Compact Flash in binary �le format.



ANALYSIS OF THE KEY TECHNOLOGIES 557

The application is divided into multiple threads for processing. Among them, the
data producer software thread acquires the data block to be processed, the data
encryption hardware thread, the thread of the data decryption hardware sharing
the PRR resources, and the data block is processed. Data consumer software thread
will handle the results of the data block output, through the serial port on the host.
The process �rst allocates two shared data bu�ers, and then creates three threads.
Among them, when hardware encryption thread was created, the dynamic binding
of the pile thread, the thread between the pile thread and the producer software
thread, the consumer software thread can achieve an orderly access to the shared
bu�er through two semaphores to complete the communication between software
and hardware. According to SHUMDR, when the system is running, the operating
system can dynamically reconstruct the PRR according to the resource usage and
hardware task description. Once the hardware encryption thread is exited, the PRR
resource is released and the data decryption thread can be created to decrypt the
data. The data decryption process is similar to the data encryption process.

4. Result analysis and discussion

4.1. Hardware thread resource usage

In the previous experimental platform, the hardware thread is the hardware logic
module which is run on the PRR through the HTI package, and is communicated
with the CPU through the OPB bus, and is accepted by the operating system. The
results are shown in Table 1.

Table 1. Usage of HTI resources

HTI resource usage Number of XC2VP30
FPGA resources

HTI resource occu-
pancy

Slice 433 13696 3.20%

FF 773 27382 2.80%

LUT 574 27392 2.10%

BRAM 2 136 1.40%

As shown in the table above, the number of Slice used is only 3.2% of the review.

4.2. Hardware thread creation

Table 2 shows the time required to create encryption and decryption hardware
thread. The average creation time of the software thread set by the default attribute
is 19µs; and the hardware thread creation time includes task con�guration time, task
management time, and stub thread creation time.

As can be seen from Table 2, if the hardware task con�guration hits, there is
no need to recon�gure, the hardware thread creation time only includes task man-



558 JINGSHU CAO, WENXIN LI

agement time as well as the thread creation time for 50µs. If the hardware task
con�guration is invalid, task recon�guration is needed. In order to reduce the cre-
ation time of the hardware task con�guration failure, SHUMDR uses CBB in the
system memory to improve the data transmission rate. With AES encryption hard-
ware thread, for example, task con�guration time reduced from 821.9ms to 32.29ms.
As can be seen from Table 2, the use of CBB signi�cantly shortens the hardware
thread creation time.

Table 2. Hardware thread creation time

AAES encrypts hardware threads
(bit stream �le size: 307525Bytes)

AES decrypts the hardware thread
(bit stream �le size: 293821Bytes)

Use CBB Not used CBB Use CBB Not used CBB

Task con�gura-
tion time

32.29 821.90 31.48 776.63

Task manage-
ment time+
Pile thread cre-
ation time

005 0.05 0.05 0.05

Create time for
hardware task
con�guration
failure

32.34 821.95 31.53 776.68

Create time for
hardware task
con�guration
hit

0.05 0.05

4.3. Communication and synchronization between threads

Table 3 describes that when data cache (D-Cache) is turned on, shared bu�er size
is 2K, 4K, 8KByte, CPU direct data I / O read and write mode is used to extend
the communication time between threads corresponding to the communication API.
Among them, the extended communication API combined with di�erent shared
bu�er allocation, which is corresponding to di�erent data transmission delay.

As can be seen from Table 3, compared with the way that CPU is directly re-
sponsible for data transmission, SHUMDR uses the DMA in the communication
controller, which e�ectively improves the communication e�ciency between threads.
Among them, the dynamically allocated bu�er is located in the D-Cache bu�er mem-
ory area, while the static allocated bu�er is located in the non-bu�er address area.
Compared with the static bu�er allocation method, because of the need to maintain
the consistency of Cache data, the communication time of dynamic bu�er allocation
is relatively long, which is characterized by better communication �exibility and
programming transparency.



ANALYSIS OF THE KEY TECHNOLOGIES 559

Table 2. Hardware thread creation time

Communication time from software thread to hardware thread

Shared bu�er
size (bytes)

Dynamic bu�er allocation Static bu�er al-
location

Direct I/O read
and write

D-Cache up-
date

Data transmis-
sion

Data transmis-
sion

Data transmis-
sion

2K 85.64 18.46 24.52 184.29

4K 167.56 33.50 43.12 369.21

8K 331.41 63.45 81.22 739.02

Communication time from software thread to hardware thread

Shared bu�er
size (bytes)

Dynamic bu�er allocation Static bu�er al-
location

Direct I/O read
and write

D-Cache void Data transmis-
sion

Data transmis-
sion

Data transmis-
sion

2K 83.47 18.46 24.52 184.29

4K 165.59 33.50 43.12 369.21

8K 329.10 63.45 81.22 739.02

5. Conclusion

As a new computing model, recon�gurable computing has high performance and
�exibility, which is one of the hot research areas of the current architecture. It can
con�gure the realization of the circuit according to the application requirements
and can be used in the �eld of embedded system design. In this paper, through the
analysis and research of the previous technology, the key technologies of practical
application were deeply studied, the experimental platform was built, and the case
analysis was carried out.

In this paper, a model-driven design method for recon�gurable embedded sys-
tems was proposed to design and implement a dynamic recon�gurable operating
system prototype guided by a uni�ed multitasking model, which provides designers
with a uni�ed multi-threaded programming model of hardware and software com-
bined with the programming model. Performance of load applications was analyzed
and predicted. From the di�erent semantics and implementation of hardware and
software tasks, an operating system framework based on uni�ed multitasking model
was designed.

In this paper, the key issues in system-level design and operational environment
support were discussed, some progress was achieved, but there are still many areas to
be improved. For example, in the prototype of recon�gurable operating system, the
communication between hardware tasks still needs to be realized by the task of the
pile, and the communication e�ciency between hardware tasks has not been fully
exploited. It is necessary to further improve the existing hardware task interface and



560 JINGSHU CAO, WENXIN LI

the inter task communication mechanism, so as to reduce the communication and
synchronization overhead between the hardware tasks, to improve the performance
of the operating system.

References

[1] K.Compton, S.Hauck: Recon�gurable computing: A survey of systems and soft-
ware. ACM Computing Surveys 34 (2002), No. 2, 171�210.

[2] K.Bondalapati, V.K.Prasanna: Recon�gurable computing systems. Proceedings
of the IEEE 90 (2002), No. 7, 1201�1217.

[3] G.Estrin: Recon�gurable computer origins: The UCLA �xed-plus-variable (F+V)
structure computer. IEEE Annals of the History of Computing 24 (2002), No. 4, 3�9.

[4] W.A.Najjar, W.Bohm, B.A.Draper, J. Hammes, R.Rinker,
J. R.Beveridge, M.Chawathe, C.Ross: High-level language abstraction for
recon�gurable computing. Computer 36 (2003), No. 8, 63�69.

[5] D.Andrews, D.Niehaus, R. Jidin, M. Finley, W.Peck, M.Frisbie, J.Ortiz.
E.Komp, P.Ashenden: Programming models for hybrid FPGA-cpu computational
components: A missing link. IEEE Micro 24 (2004), No. 4, 42�53.

[6] M.Vuletic, L. Pozzi, P. Ienne: Seamless hardware-software integration in recon�g-
urable computing systems. IEEE Design & Test of Computers 22 (2005) No. 2, 102�113.

[7] J.M.P.Cardoso, P.C.Diniz, M.Weinhardt: Compiling for recon�gurable com-
puting: A survey. Journal ACM Computing Surveys (CSUR) 42 (2010), No. 4, Article
No. 13.

[8] T.El-Ghazawi, E. El-Araby, M.Huang, K.Gaj, V.Kindratenko, D.Buell:
The promise of high-performance recon�gurable computing. Computer 41 (2008), No. 2,
69�76.

[9] M.B.Taylor, J.Kim, J.Miller, D.Wentzlaff, F.Ghodrat, B.Greenwald,
H.Hoffman, P. Johnson, J.W. Lee, W. Lee, A.Ma, A. Saraf, S. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S.Amarasinghe, A.Agarwal: The Raw
microprocessor: A computational fabric for software circuits and general-purpose pro-
grams. IEEE Micro 22 (2002), No. 2, 25�35.

[10] C.A.Moritz, Y.Donald, A.Agarwal: Simple �t: A framework for analyzing
design trade-o�s in Raw architectures. IEEE Transactions on Parallel and Distributed
Systems 12, (2001), No. 7, 730�742.

[11] S.C.Goldstein, H. Schmit, M.Budiu, S. Cadambi, M.Moe, R.R.Taylor:
PipeRench: A recon�gurable architecture and compiler. Computer 33 (2000), No. 4,
70�77.

[12] T. J. Callahan, J. R.Hauser, J.Wawrzynek: The garp architecture and C com-
piler. Computer 33 (2000), No. 4, 62�69.

[13] E.Fuller, M.Caffrey, A. Salazar, C.Carmichael, J. Fabula: Radiation test-
ing update, SEU mitigation, and availability analysis of the virtex FPGA for space
recon�gurable computing. Third Military and Aerospace Programmable Logic Devices
International Conference (MAPLD'2000), 26�28 Sept., Maryland, USA, 2000.

[14] M.Sanchez-Elez, H.Du, N.Tabrizi, Y. Long, N.Bagherzadeh,
M.Fernandez: Algorithm optimizations and mapping scheme for interactive
ray tracing on a recon�gurable architecture. Computers & Graphics 27 (2003), No. 5,
701�713.

[15] N.Gude, T.Koponen, J. Pettit, B. Pfaff, M.Casado, N.McKeown,
S. Shenker: NOX: Towards an operating system for networks. ACM SIGCOMM
Computer Communication Review 38 (2008), No. 3, 105�110.

Received September 12, 2017


	Jingshu Cao, Wenxin Li: Analysis of the key technologies of practical application based on embedded reconfigurable computing system
	Introduction
	State of the art
	Methodology
	Result analysis and discussion
	Conclusion


